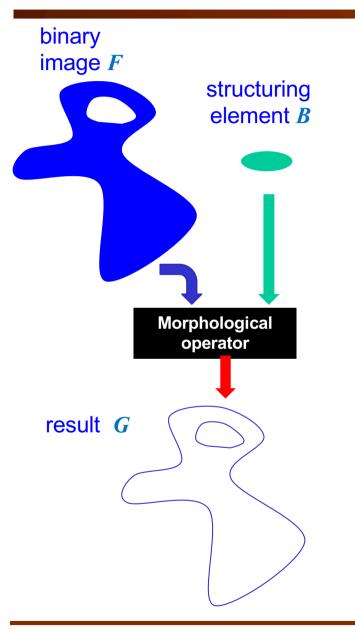
6 – Morphological Operations Part 1

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE4_DVS/ E-mail: p.cheung@imperial.ac.uk

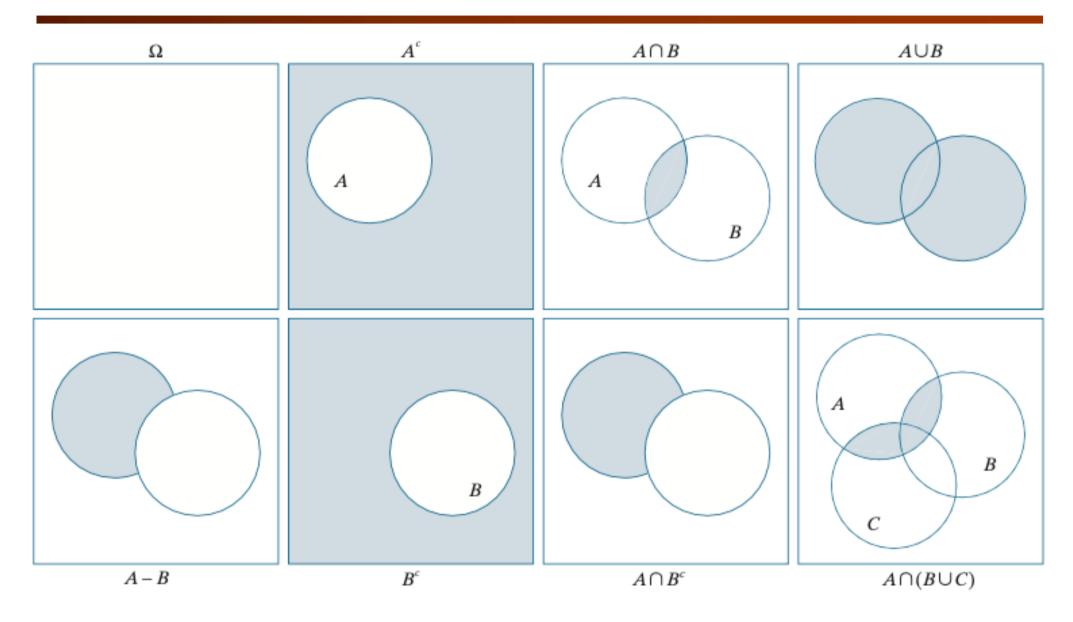
Morphological Operation



- Take binary image F
- Take structuring element *B* (similar to filter kernel)
- Perform morphological operation (similar to, but different from, convolution in spatial filter)
- Produce a new image G
- Useful for:
 - Image **pre-processing** (noise filtering, shape simplification)
 - Enhancing object structure (skeletonizing, thinning, thickening, convex hull,)
 - Segmenting objects from the background
 - Quantitative description of objects (area, perimeter, projections,)

abcd efgh

Logic Operators



Notations for Set and Logical Operations

- If *a* is an *element* of set *A*, then $a \in A$
- If a is NOT an *element* of set A, then $a \notin A$
- A set is denoted by the contents of two braces: { .}.
 - For example:

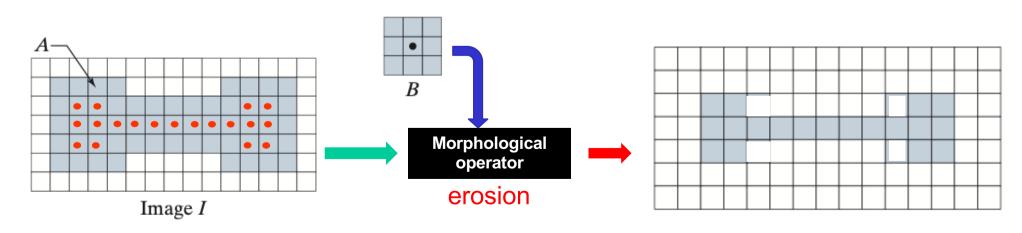
$$C = \left\{ c \mid c = -d, \, d \in D \right\}$$

means that *C* is the set of elements, *c*, such that *c* is formed by multiplying each of the elements of set *D* by -1.

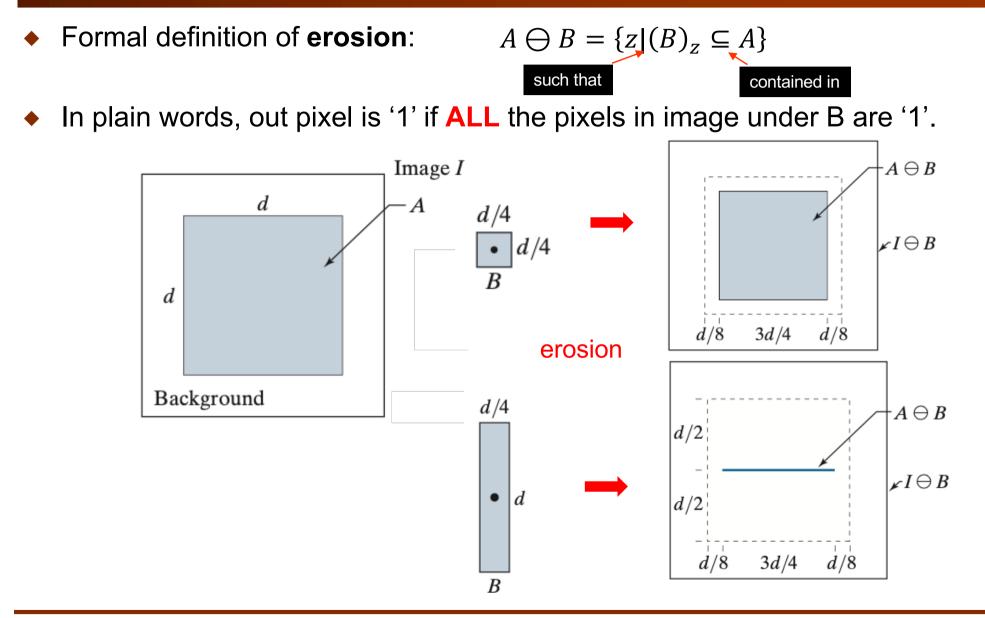
- If every element of a set A is also an element of a set B, then A is said to be a subset of B, denoted as: A⊂B
- Union: $C = A \cup B$ Intersection: $D = A \cap B$ disjoint $A \cap B = \emptyset$
- Complement: $A^c = \{w \mid w \notin A\}$
- Difference of two sets A and B: $A B = \{w \mid w \in A, w \notin B\} = A \cap B^c$

Example of a Morphological Operation

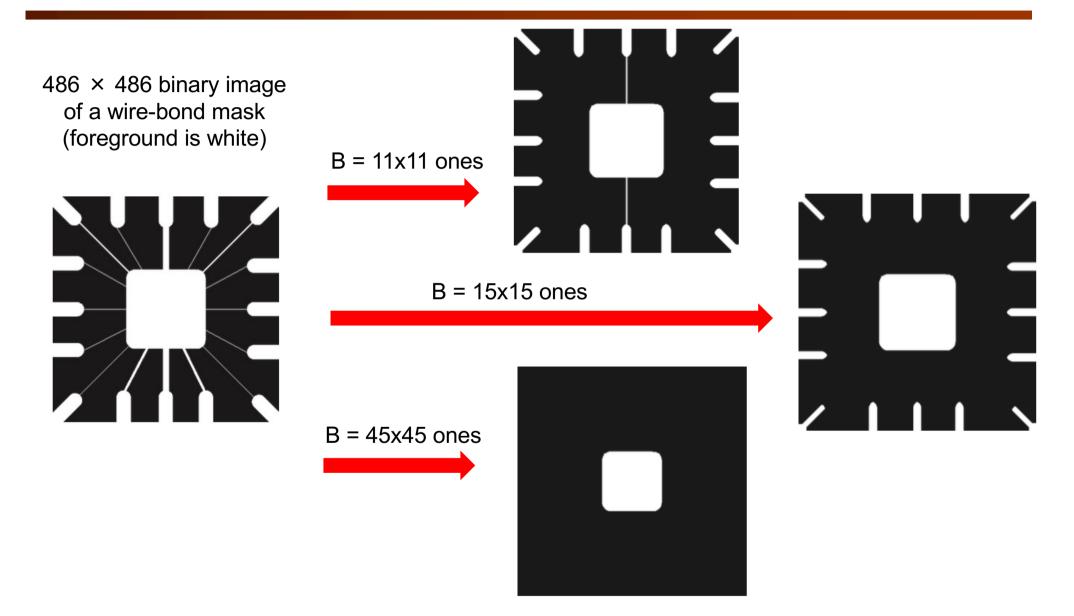
- Binary image, I, consisting of an object (set) A shown shaded.
- 3 × 3 structuring element (SE) whose elements are all 1's (foreground pixels). The background pixels are (0's).
- Morphological operations:
 - 1. Form an image containing only the object A as image I
 - 2. Move B over image I, pixel-by-pixel
 - 3. At each pixel, if B is **completely contained** in A, mark the location of the origin of B as a **foreground** pixel (i.e. 1) in the new image, else leave as **background**



Erosion Operator \ominus

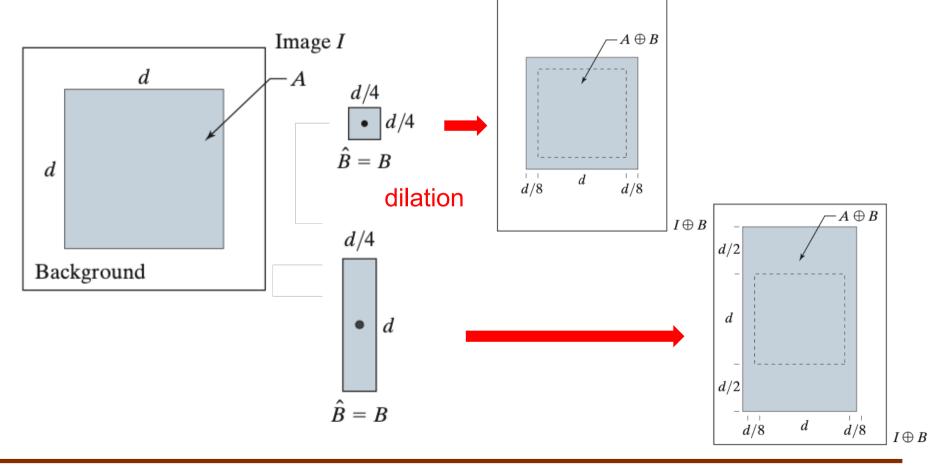


Application of Erosion Operator \ominus



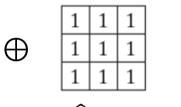
Dilation Operator \oplus

- Formal definition of **dilation** is: $A \oplus B = \{z | (\hat{B})_z \cap A \neq \emptyset\}$
- In plain words, pixel is '1' if ANY of the pixels in image under B is '1'.



Application of Dilation Operator

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.



 $\hat{B} = B$

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Duality of Erosion and Dilation

• Erosion of A by B is the complement of the dilation of A^c by \hat{B}

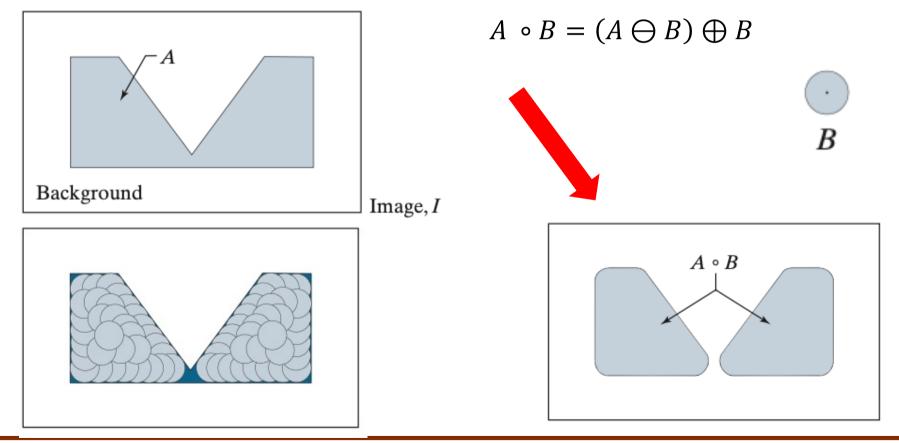
 $(A \ominus B)^c = A^c \oplus \hat{B}$

- If B is symmetrical with respect to its origin, then $\hat{B} = B$. Then erosion of A is the same as dilating its background and complementing the result.
 - Dilation of A by B is the complement of the erosion of A^c by \hat{B}

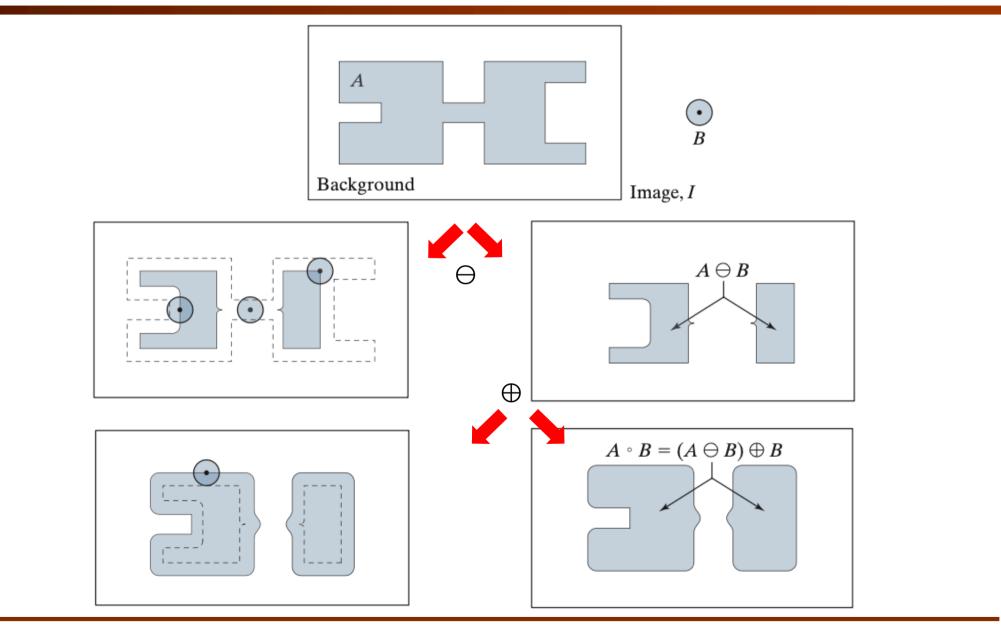
 $(A \oplus B)^c = A^c \ominus \hat{B}$

Opening Operator

- Combine erosion and dilation operators results in other operators.
- Opening operator: smoothes contour, breaks narrow passages, and eliminates thin protrusions.
- Opening A by B is erosion of A by B, followed by dilation of the result by B:

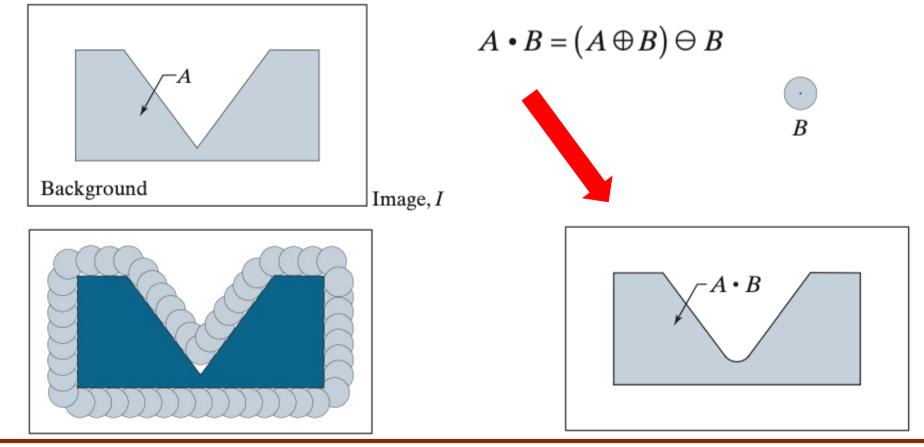


Opening in Action

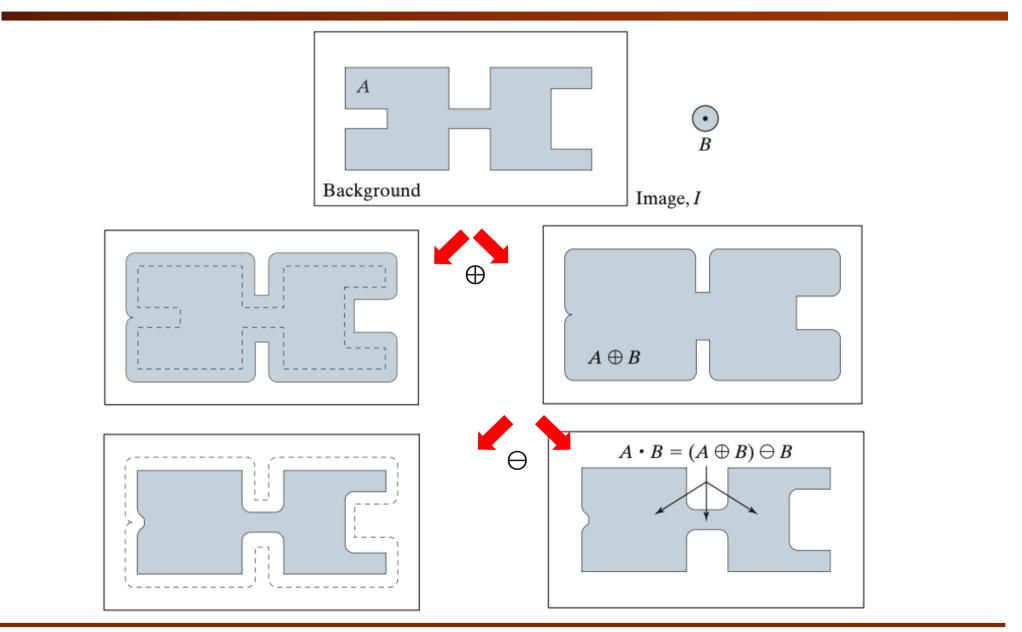


Closing Operator

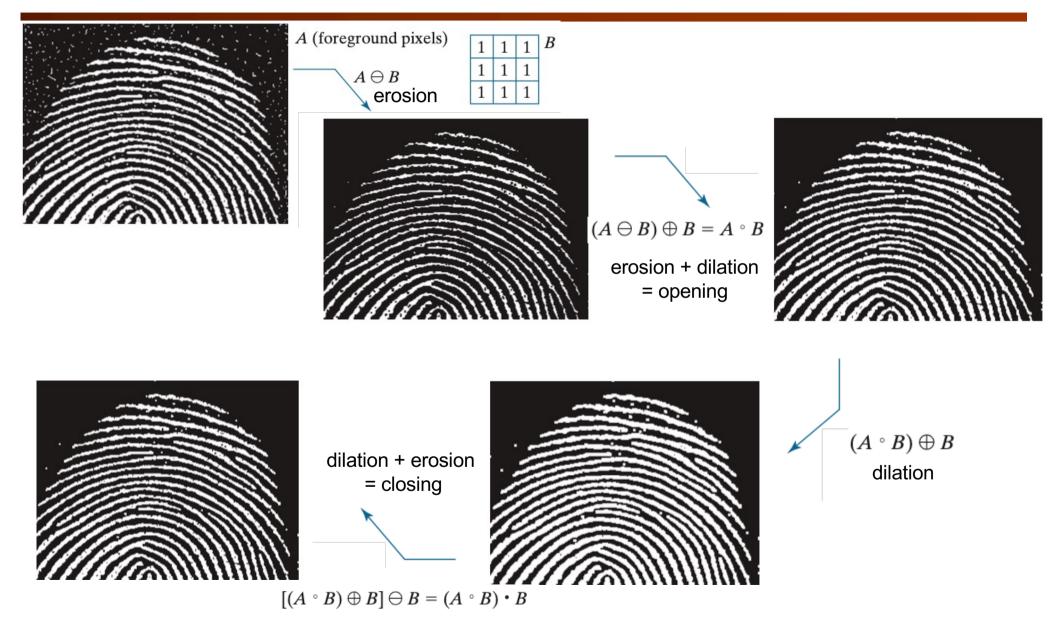
- Closing operator: smooth sections of contours, fuses narrow breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour.
- Closing of A by B is dilation of A by B, followed by erosion of result by B
- Closing of set A by structuring element B, denoted as $A \cdot B$, is defined as:



Closing in Action

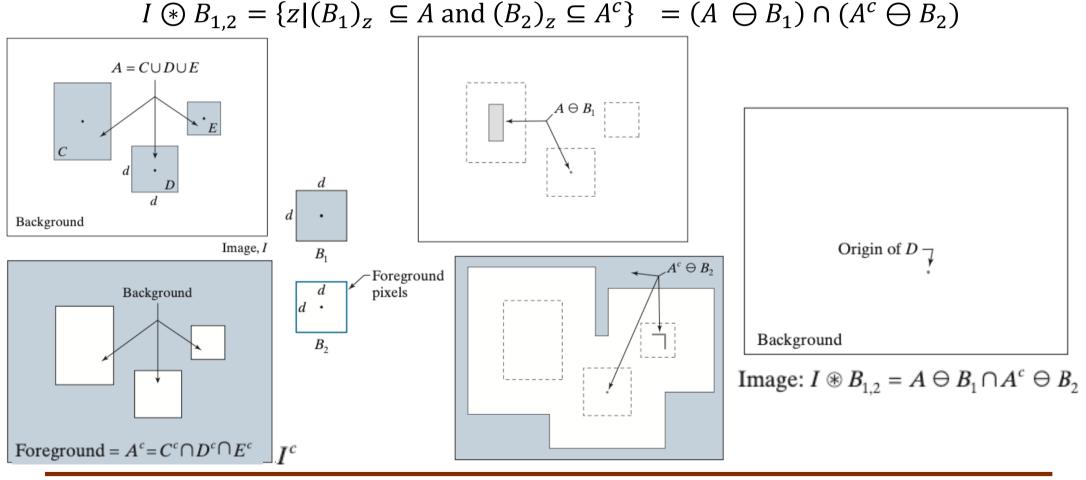


Morphological Filtering



Hit-or-Miss Transform (HMT)

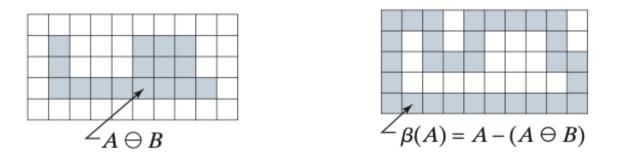
- The *Hit-or-Miss transform* (HMT) is a basic tool for shape detection.
- HMT utilizes two structuring elements: B_1 , for detecting shapes in the foreground A, and B_2 , for detecting shapes in the background A^c .



PYKC 28 Jan 2025

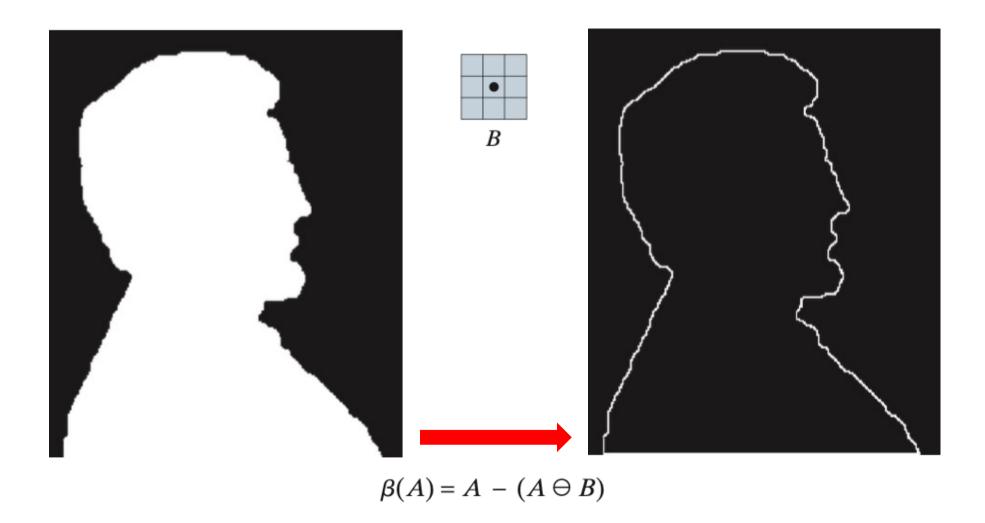
Boundary Extraction

 Boundary of a set A of foreground pixels denoted by β(A), can be obtained by first eroding A by a suitable structuring element B, and then performing the set difference between A and its erosion.



$$\beta(A) = A - (A \ominus B)$$

Boundary Extraction Example



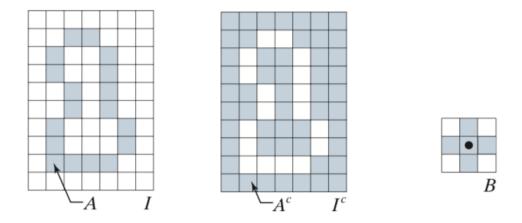
Hole filling

- A hole is defined as a background region surrounded by a connected border of foreground pixels.
- The formal definition of the hole filling algorithm is:

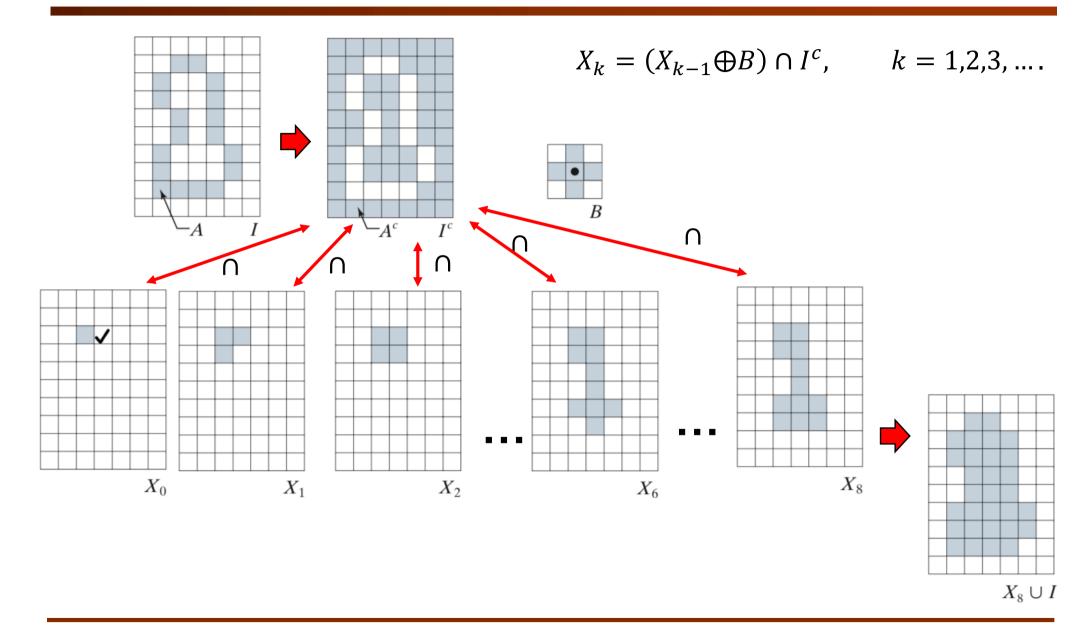
$$X_k = (X_{k-1} \oplus B) \cap I^c, \qquad k = 1, 2, 3, \dots$$

where X_0 is the first pixel known to be in the hole and X_k are the other hole pixels.

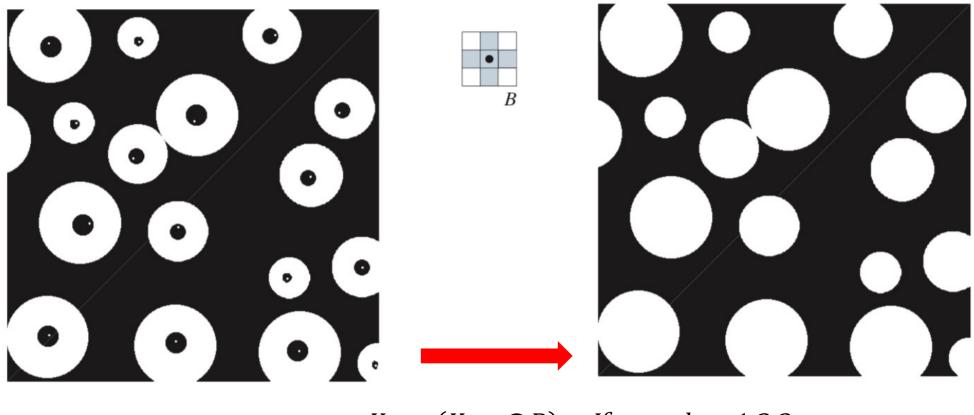
• Consider this example:



Hole filling



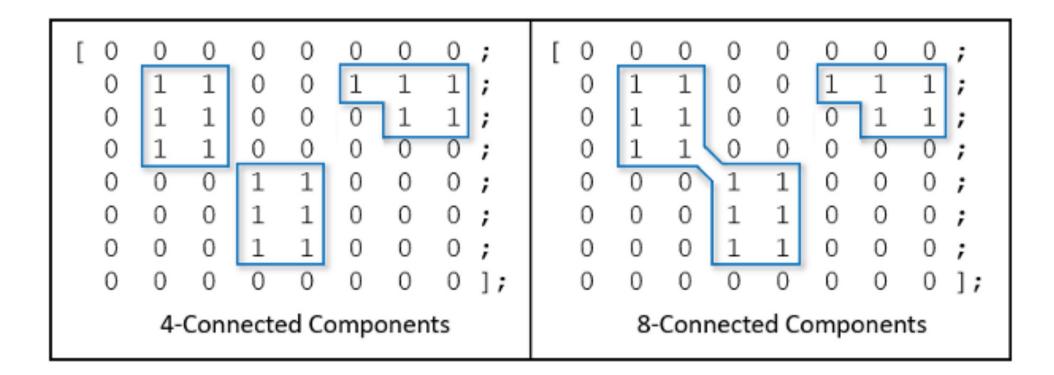
Example of Hole Filling



 $X_k = (X_{k-1} \oplus B) \cap I^c, \qquad k = 1, 2, 3, \dots$

What are Connected Components?

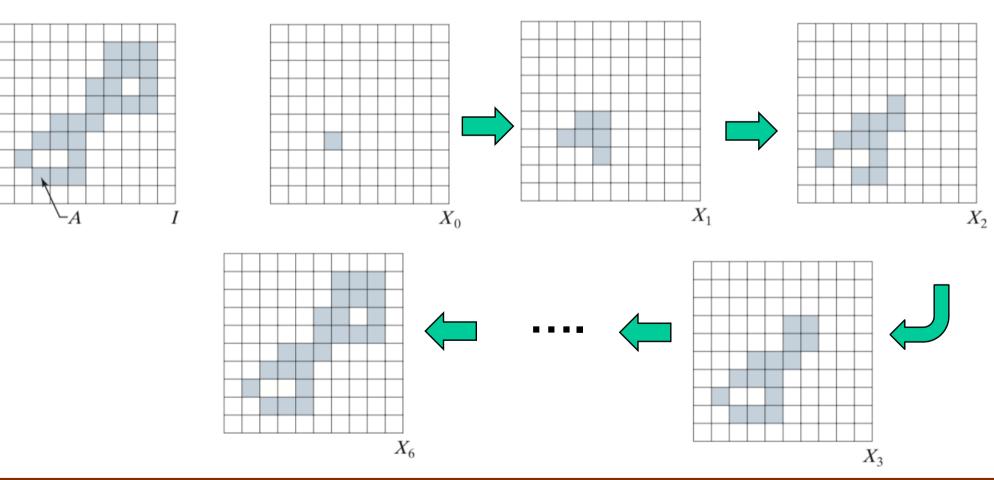
- A connected component is a set of adjacent pixels in a binary image.
- Two possible definitions of what is "connected":
 - 4-connectivity Pixels are connected if their edges touch.
 - 8-connectivity Pixels are connected if their edges or corners touch.



Extraction of Connected Components

• A connected component is a set of adjacent pixels in a binary image.

$$X_k = (X_{k-1} \oplus B) \cap I, \qquad k = 1,2,3,...$$



B

Example application of Connected Components

• X-ray image of a chicken fillet with bone fragments embedded.

